101010: That's the number 42 represented in binary, which is the mathematical way today's binary computers see every single piece of information flowing through them, whether it's a stock price, the latest Adele track, or a calculation to generate an MRI of a tumor. But now IBM believes it's made progress in developing quantum computers, which don't use binary coding. It is not overstating the matter to say this really may be the ultimate answer in computing machines. Quick, mop your brow and don't worry: The science isn't too hard to grasp and the revolution, when it comes, could rock the world. In a very good way.
First, a little background: Computers today, everything from the chip controlling your washing machine cycle to the screen you're reading this on, rely on binary math to work. This reduces the information in problems you ask a computer to a counting system based on just "1"s and "0"s. That translates beautifully into the electronics of a computer circuit: A "1" matches up with a little burst of electricity, a "0" means none. By shuttling trillions upon trillions of these pulses, called bits, through tiny silicon circuits and transistor gates that flip their direction or trigger an ongoing signal, the chip does math with these ones and zeros. It's a mind-bogglingly complex and very swift dance that ultimately results in Angry Birds playing on the screen of your iPad. Or, after kajillions of calculations more in a supercomputer, it results in a model predicting climate change.
Now, what if instead of simply being able to do math with ones and zeros, a computer chip could work with bits that included other numbers? You'd have to design more complex circuitry, for sure, but it means every single one of those tiny electronic calculations that's happening every millisecond could tackle more information at once, and would ultimately mean a more powerful computer that may calculate faster. Got that? Good. Now how about if instead of a one or a zero, your computer'...
[Source: Fast Company]
No comments:
Post a Comment